0 مخالف

تعداد مقسوم‌علیه‌های مشترک  $3^4 \times 5^2 \times 7^6$ و $2^3 \times 5^3 \times 7^4 \times 13$

<p>تعداد مقسوم&zwnj;علیه&zwnj;های مشترک&nbsp; $3^4 \times 5^2 \times 7^6$ و $2^3 \times 5^3 \times 7^4 \times 13$</p>

تعداد مقسوم‌علیه‌های مشترک دو عدد $3^4 \times 5^2 \times 7^6$ و $2^3 \times 5^3 \times 7^4 \times 13$ را بیابید.

# نظریه اعداد # جبر و احتمال # ریاضیات گسسته
پاسخ‌ها

برای پاسخ به این سوال کافی‌است ابتدا ب.م.م دو عدد را حساب کنیم و تعداد تمام اعدادی که ب.م.م را عاد می‌کنند به دست آوریم.

اگر دلیل این موضوع واضح نیست می‌توانیم دو عدد کوچک‌تر مثال بزنیم تا بهتر متوجه شویم. به عنوان مثال، اعداد 8 و 12 دارای ب.م.م 4 هستند و دو عدد 1 و 2 آن را عاد می‌کنند که هر دوی 12 و 8 را نیز عاد می‌کنند.

به پاسخ سوال بازمیگردیم، این دو عدد دارای ب.م.م $5^2 \times 7^4$ هستند که تعداد مقسوم‌علیه‌های آن برابرند با $(2+1)(4+1) = 15$، زیرا کافی‌است تعداد مقسوم‌علیه‌های هر بخش از تجزیه‌ی عدد به عوامل اول را محاسبه و سپس در هم ضرب کنیم.

در حالت کلی‌تر اگر عددی به فرم $p^n$ داشته باشیم، می‌دانیم مجموعه‌ی $1,p,p^2,\ldots , p^n$ مقسوم‌علیه‌های $p^n$ خواهند بود که دارای تعداد عناصر $n+1$ است.

0 مخالف
پیش نمایش پاسخ